Sparse Multiscale Local Binary Patterns

نویسندگان

  • Yogesh Raja
  • Shaogang Gong
چکیده

In a Local Binary Pattern (LBP) representation, circular point features are taken in their entirety as predicates and restricted to uniform patterns with limited scales of small numbers of features in order to avoid large bin complexity. Such a design cannot fully exploit the discriminative capacity of the features available. To address the problem, this paper proposes (1) a pairwise-coupled reformulation of LBP-type classification which involves selecting single-point features for each pair of classes across multiple scales to form compact, contextually-relevant multiscale predicates known as Multiscale Selected Local Binary Features (MSLBF), and (2) a novel binary feature selection procedure, known as Binary Histogram Intersection Minimisation (BHIM) designed to choose features with minimal redundancy. Experiments show the advantages of MSLBF over traditional LBP representation and of BHIM over feature selection schemes such as AdaBoost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP

In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...

متن کامل

Multiscale Fields of Patterns

We describe a framework for defining high-order image models that can be used in a variety of applications. The approach involves modeling local patterns in a multiscale representation of an image. Local properties of a coarsened image reflect non-local properties of the original image. In the case of binary images local properties are defined by the binary patterns observed over small neighbor...

متن کامل

Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition

Local Binary Patterns (LBP) have been well exploited for facial image analysis recently. In the existing work, the LBP histograms are extracted from local facial regions, and used as a whole for the regional description. However, not all bins in the LBP histogram are necessary to be useful for facial representation. In this paper, we propose to learn discriminative LBP-Histogram (LBPH) bins for...

متن کامل

Feature Representation and Extraction for Image Search and Video Retrieval

The ever-increasing popularity of intelligent image search and video retrieval warrants a comprehensive study of the major feature representation and extraction methods often applied in image search and video retrieval. Towards that end, this chapter reviews some representative feature representation and extraction approaches, such as the Spatial Pyramid Matching (SPM), the soft assignment codi...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006